Filter Based Methods For Statistical Linear Inverse Problems

نویسندگان

  • Marco A. Iglesias
  • Kui Lin
  • Shuai Lu
  • Andrew M. Stuart
چکیده

Ill-posed inverse problems are ubiquitous in applications. Understanding of algorithms for their solution has been greatly enhanced by a deep understanding of the linear inverse problem. In the applied communities ensemble-based filtering methods have recently been used to solve inverse problems by introducing an artificial dynamical system. This opens up the possibility of using a range of other filtering methods, such as 3DVAR and Kalman based methods, to solve inverse problems, again by introducing an artificial dynamical system. The aim of this paper is to analyze such methods in the context of the ill-posed linear inverse problem. Statistical linear inverse problems are studied in the sense that the observational noise is assumed to be derived via realization of a Gaussian random variable. We investigate the asymptotic behavior of filter based methods for these inverse problems. Rigorous convergence rates are established for 3DVAR and for the Kalman filters, including minimax rates in some instances. Blowup of 3DVAR and a variant of its basic form is also presented, and optimality of the Kalman filter is discussed. These analyses reveal a close connection between (iterative) regularization schemes in deterministic inverse problems and ∗School of Mathematical Sciences, University of Nottingham, UK, [email protected] †School of Mathematical Sciences, Fudan University, China, [email protected] ‡School of Mathematical Sciences, Fudan University, China, [email protected] §Mathematics Institute, University of Warwick, UK, [email protected] 1 ar X iv :1 51 2. 01 95 5v 1 [ m at h. ST ] 7 D ec 2 01 5 filter based methods in data assimilation. Numerical experiments are presented to illustrate the theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Methods for Estimating Baseflow from Streamflow Records in a Semi Arid Watershed

Understanding of the runoff generation processes is important in understanding the magnitude and dynamics ofgroundwater discharge. However, these processes continue to be difficult to quantify and conceptualize. In this study,two digital filter based separation modules, the Recursive filtering method (RDF) and a generalization of therecursive digital filter (GRDF) were1991–2002 in the Hableh Ro...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems

In this paper‎, two inverse problems of determining an unknown source term in a parabolic‎ equation are considered‎. ‎First‎, ‎the unknown source term is ‎estimated in the form of a combination of Chebyshev functions‎. ‎Then‎, ‎a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem‎. ‎For solving the problem‎, ‎the operational matrices of int...

متن کامل

Application of different inverse methods for combination of vS and vGPR data to estimate porosity and water saturation

Inverse problem is one of the most important problems in geophysics as model parameters can be estimated from the measured data directly using inverse techniques. In this paper, applying different inverse methods on integration of S-wave and GPR velocities are investigated for estimation of porosity and water saturation. A combination of linear and nonlinear inverse problems are solved. Linear ...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015